QUADRATIC EQUATIONS

Physics is mathematical not because we know so much about the physical world, but because we know so little; it is only its mathematical properties that we can discover.

By O.P. GUPTA Math Mentor INDIRA AWARD WINNER

E For detailed solutions, check YouTube Channel.

YouTube.com/MathematiciaByOPGupta

A Multiple Choice Questions, with **only** one correct option.

Q01. The general form of a quadratic equation is:
(a)
$$ax^2 + bx + c$$
 (b) $ax^2 + bx + c = 0$ (c) $a^2x + b$ (d) $ax^2 + bx + c = 0$, $a \neq 0$
Q02. The number of possible solutions of a quadratic equation are:
(a) exactly two (b) at most two (c) at least two (d) None of these
Q03. The discriminant of the equation $bx^2 + ax + c = 0$, $b \neq 0$ is given by:
(a) $\sqrt{b^2 - 4ac}$ (b) $\sqrt{a^2 + 4bc}$ (c) $\sqrt{a^2 - 4bc}$ (d) $\sqrt{b^2 + 4ac}$
Q04. If the roots of a quadratic equation are equal, then the discriminant is:
(a) 1 (b) 0 (c) greater than 0 (d) less than 0
Q05. The roots of $3x^2 - 7x + 4 = 0$ are:
(a) rationals (b) irrationals (c) positive integers (d) negative integers
Q06. The roots of equation $x + \frac{16}{x} = 10$ are:
(a) 4, 6 (b) 4, 4 (c) 4, 5 (d) 2, 8
Q07. If α , β are the roots of $x^2 + px + q = 0$, then the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ is:
(a) $\frac{p^2 - 2q}{q}$ (b) $\frac{2q - p^2}{q}$ (c) $\frac{p^2 + 2q}{q}$ (d) None of these
Q08. If the roots of $ax^2 + bx + c = 0$ be equal, then the value of c is:
(a) $-\frac{b}{2a}$ (b) $\frac{b}{2a}$ (c) $-\frac{b^2}{4a}$ (d) $\frac{b^2}{4a}$
Q09. If the sum of the roots of an equation is 6 and one root is $3 - \sqrt{5}$, then the equation is:
(a) $x^2 - 6x + 4 = 0$ (b) $x^2 - 4x + 6 = 0$ (c) $x^2 - 6x + 5 = 0$ (d) None of these

MATHEMATICIA By O.P. GUPTA : MCQ in Mathematics (Class 10)

MATHEMATICIA for Class 10

Q10.	If α , β be the roots of $ax^2 + bx + c = 0$, then the value of $\alpha^2 + \beta^2$ is:				
	(a) $\frac{b^2-2ac}{2a}$	(b) $\frac{b^2-4ac}{2a}$	(c) $\frac{b^2-2ac}{a^2}$	(d) $\frac{b^2 + 4ac}{2ac}$	
Q11.	The quadratic equation whose roots are a, $\frac{1}{a}$ is:				
	(a) $ax^2 - (a^2 + 1)x + a = 0$		(b) $ax^2 - (a^2 - 1)x + a = 0$		
	(c) $ax^2 - (a^2 - 1)x - a = 0$		(d) None of these		
Q12.	The sum of the age of a son and his father is 35 years and the product is 150. Their ages are:				
	(a) 15 years, 20 years		(b) 15 years, 10 years		
	(c) 5 years, 30 years		(d) 6 years, 30 years		
Q13.	A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. The speed of the train is:				
	(a) 30 km/h	(b) 35 km/h	(c) 12 km/h	(d) 40 km/h	
Q14.	The value of x on solving $\frac{x}{x-1} + \frac{x-1}{x} = 2\frac{1}{2}$ will be:				
	(a) –2, 1	(b) −2, −1	(c) 2, -1	(d) None of these	
Q15.	What is the sum of t	he roots of the equation	n $x(3x+8) = 3?$	$\langle C \rangle$	
	(a) $\frac{8}{3}$	(b) $-\frac{8}{3}$	(c) 8	(d) 3	
Q16.	The roots of the equ	ation $\sqrt{2x+9} + x = 13$	are:		
	(a) 8, -20	(b) 20, -8	(c) -20, -8	(d) 20, 8	
Q17.	. The values of x on solving $15x + \frac{3}{x} = 18$ are:				
	(a) 5, 1	(b) $\frac{2}{5}, \frac{1}{2}$	(c) 2, 3	(d) 1, $\frac{1}{5}$	
Q18.	If $\sqrt{x-7} + \sqrt{x-3} =$	2 then the value of x i	s:		
	(a) 9	(b) 7	(c) 19	(d) 3	
Q19.	If $\frac{x}{2} + \frac{6}{x} = 4$, then the value of x are:				
	(a) –6 and –2	(b) +6 and -2	(c) –6 and 2	(d) 6 and 2	
Q20.	If the sum of squares of two consecutive even numbers is 100, then the numbers are:				
	(a) 4 and 6	(b) 8 and 10	(c) 10 and 12	(d) None of these	
Q21.	The nature of the roots of quadratic equation $x^2 - 8x + 12 = 0$ is:				
	(a) real and equal	(b) real and unequal	(c) doesn't exist	(d) can't say	
Q22.	If α and β are the roots of $ax^2 + bx + c = 0$, then value of $\alpha^2 + \beta^2 + 2\alpha\beta$ is:				

	(a) $\frac{a^2}{b^2}$	(b) $\frac{b^2}{a^2}$	$(c) -\frac{b^2}{a^2}$	(d) Data insufficient		
Q23.	Sum of the areas of two squares is 468 m^2 . If the difference of their perimeter is 24 m, then the sides of the two squares are:					
	(a) 18 m, 14 m	(b) 13 m, 12 m	(c) 18 m, 12 m	(d) None of these		
Q24.	If $\frac{x}{16} - \frac{4}{x} = 0$, then x is:					
	(a) ± 3	(b) ± 8	(c) ± 16	$(d) \pm 4$		
Q25.	If $x^2 + y^2 = 17$ and $xy = 4$ then the value of $\frac{x}{y} + \frac{y}{x}$ is:					
	(a) $\frac{4}{17}$	(b) $\frac{17}{4}$	(c) $\frac{5}{4}$	(d) None of these		
Q26.	Sum of a number and its reciprocal is $\frac{17}{4}$, the number is:					
	(a) 4	(b) $\frac{1}{4}$	(c) 5	(d) options (a) and (b) b	ooth	
Q27.	Sum of the squares of two consecutive natural numbers is 221 then, the numbers are:					
	(a) 9, 10	(b) 10, 11	(c) 11, 12	(d) 12, 13		
Q28.	If α and β are the roo	ots of equation $2x^2 - 5$	$x+3=0$ then $\alpha^2\beta+\beta^2$	$2^{\alpha} = \dots$?		
	(a) $\frac{5}{2}$	(b) $\frac{15}{4}$	(c) $\frac{3}{2}$	(d) $-\frac{15}{4}$		
Q29.	Product of the age o	f a child five years ago	with his age nine year	rs after is 15. His present a	age is:	
	(a) 4 years	(b) 6 years	(c) 5 years	(d) None of these		
Q30.	If usual speed of a passenger train is increased by 5 km/h then, it takes 2 hour less in covering th distance of 300 km. Its usual speed is:				ring the	
	(a) 25 km/h	(b) 20 km/h	(c) 30 km/h	(d) None of these		
Q31.	Which of the following is not a quadratic equation:					
	(a) $3x - \frac{5}{x} = x^2$	(b) $3 - x^2 - 8x = 0$	(c) $x + \frac{1}{x} = 8$	$(d) x^2 - 3 = 4x^2 - 4x$		
Q32.	The equation which is not a quadratic equation in the followings is:					
	(a) $x - \frac{3}{x} = 3$	(b) $x + \frac{1}{x} = 3$	(c) $3x + \frac{3}{x} = x^2$	(d) $3x^2 - 1 = 4x^2 - 4x$		
Q33.	The value of k for w	which the equation $2x^2$	+8kx+8=0 has equa	l roots is:		
	(a) Only 3	(b) Only –3	(c) ±3	(d) ±1		
Q34.	The value of k for which $x = -2$ is a root of the equation $kx^2 + x - 6 = 0$:					
	(a) $-\frac{3}{2}$	(b) -1	(c) –2	(d) 2		
MATHEMATICIA By O.P. GUPTA : MCQ in Mathematics (Class 10)					3	

MATHEMATICIA for Class 10

Q35.	The value of 'p' so that the quadratic equation $x^2 + 5px + 16 = 0$ has no real roots:				
	(a) $p > 8$	(b) p < 5	(c) $-\frac{8}{5}$	$(d) -\frac{8}{5} \le p < 0$	
Q36.	6. If $px^2 + 3x + q = 0$ has two roots $x = -1$ and $x = -2$, the value of $q - p$ is:				
	(a) –1	(b) 1	(c) 2	(d) –2	
Q37.	The common root of the equations $x^2 - 3x + 2 = 0$ and $2x^2 - 5x + 2 = 0$ is:				
	(a) $x = 2$	(b) x = 1	(c) $x = -2$	(d) $x = \frac{1}{2}$	
Q38.	8. If $x^2 - 5x + 1 = 0$, the value of $\left(x + \frac{1}{x}\right)$ is:				
	(a) –2	(b) –5	(c) 5	(d) 3	
Q39.	If $a-3=\frac{10}{a}$, the val	ues of 'a' are:			
	(a) 5, 0	(b) 5, 2	(c) -5, 2	(d) 5, -2	
Q40.	40. If roots of the equation $kx^2 + (a+b)x + ab = 0$ are '-1' and '-b' then, the value of 'k' is:				
	(a) –1	(b) 1	(c) 2	(d) -2	
Q41.	Q41. The quadratic equation with real coefficients whose one root is $2+\sqrt{3}$ is:				
	(a) $x^2 - 2x + 1 = 0$	(b) $x^2 - 4x + 1 = 0$	(c) $x^2 - 4x + 3 = 0$	(d) $x^2 - 4x + 4 = 0$	
Q42.	2. The difference of roots of the quadratic equation $x^2 + kx + 12 = 0$ is 1, the positive value of				
	(a) –7	(b) 7	(c) 4	(d) 8	
Q43.	If 2, 3 are the roots of $x^2 + px + q = 0$, then the values of p and q are:				
	(a) -5, 6	(b) 6, 5	(c) -6, 5	(d) -5, -6	
Q44.	The nature of the roots of $x^2 - 4x + 1 = 0$ is:				
	(a) real roots	CND (1	(b) no real roots		
	(c) real and equal roots		(d) None of these		
Q45.	If $x = \sqrt{7\sqrt{7\sqrt{7}}}$ isn't correct?	and $y = \sqrt{20 + \sqrt{20} + \sqrt{20 + \sqrt{20 + \sqrt{20 + \sqrt{20 + \sqrt{20 + \sqrt{20 + \sqrt{20} + \sqrt{20 + \sqrt{20 + \sqrt{20} + \sqrt{20 + \sqrt{20 + \sqrt{20 + \sqrt{20} + \sqrt{20 + \sqrt{20} + \sqrt{20 + \sqrt{20 + \sqrt{20} + \sqrt{20 + \sqrt{20} + \sqrt{20 + \sqrt{20} + \sqrt{20 + \sqrt{20} $	$\sqrt{20+}$ where x, y 2	> 0 then, which of the following	
	(a) $x + y = 12$	(b) $x - y = 3$	(c) $x^2 + y^2 = 74$	(d) $x^2 - y^2 = 24$	
Q46.	If $x = a$, b are the tw	vo roots of $9^x - 4 \times 3^{x+1}$	+27 = 0 then, which c	of the following isn't correct?	
	(a) $a + b = 3$	(b) $(a-b)^2 = 1$	$(c) \frac{a}{b} + \frac{b}{a} = \frac{5}{2}$	(d) $a + b = 4$	
Q47.	If $(\sqrt{2}+1)^x + (\sqrt{2}-1)^x$	$(1)^x - 2\sqrt{2} = 0$ then, sum	n of all possible values	of x is:	
	(a) 0	(b) 1	(c) 2	(d) 3	

For all the Math-Gyan, visit at **THEOPGUPTA.COM**

Search WhatsApp @ +919650350480

		AN	ANSWERS KEY					
Q01. d	Q02. a	Q03. c	Q04. b	Q05. a	Q06. d	Q07. a		
Q08. d	Q09. a	Q10. c	Q11. a	Q12. c	Q13. d	Q14. c		
Q15. b	Q16. d	Q17. d	Q18. b	Q19. d	Q20. d	Q21. b		
Q22. b	Q23. c	Q24. b	Q25. b	Q26. a	Q27. b	Q28. b		
Q29. a	Q30. d	Q31. a	Q32. d	Q33. d	Q34. d	Q35. c		
Q36. a	Q37. a	Q38. d	Q39. d	Q40. a	Q41. b	Q42. b		
Q43. a	Q44. a	Q45. b	Q46. d	Q47. a				

Dear math scholars,

We have taken utmost care while preparing this draft. Still chances of human error can't be ruled out. Please inform us about any Typing error / mistake in this document. This will help many future learners of Mathematics.

Email ID - **iMathematicia@gmail.com** WhatsApp @ +91 9650350480 (only **message**)

O.P. GUPTA, Math Mentor [Maths (Hons.), E & C Engg., Indira Award Winner]

Follow us on Twitter **@theopgupta** Follow us on Instagram **@theopgupta** Official Website : **www.theOPGupta.com**

■ Buy our Books, Test Papers and Sample Papers at **theopgupta.com**

MATHEMATICIA By O.P. GUPTA : MCQ in Mathematics (Class 10)

theopgupta .com OPGUPTA MATHEMATICIA BY O.P. GUPTA

...a name you can bank upon!

To get FREE PDF Materials, join WhatsApp Teachers Group by Clicking on the Logo

If you are a Student, then you may join our Students Group

You can add our WhatsApp no. +919650350480 to your Groups also

Feel Safe to **Share this Document** with other math scholars

