QUADRATIC EQUATIONS

Physics is mathematical not because we know so much about the physical world, but because we know so little; it is only its mathematical properties that we can discover.

By O.P. GUPTA Math Mentor INDIRA AWARD WINNER

For detailed solutions, check YouTube Channel.

YouTube.com/MathematiciaByOPGupta

is Multiple Choice Questions, with only one correct option.

Q 01 . The general form of a quadratic equation is:
(a) $a x^{2}+b x+c$
(b) $a x^{2}+b x+c=0$
(c) $a^{2} x+b$
(d) $a x^{2}+b x+c=0, a \neq 0$

Q 02 . The number of possible solutions of a quadratic equation are:
(a) exactly two
(b) at most two
(c) at least two
(d) None of these

Q03. The discriminant of the equation $b x^{2}+a x+c=0, b \neq 0$ is given by:
(a) $\sqrt{b^{2}-4 a c}$
(b) $\sqrt{a^{2}+4 b c}$
(c) $\sqrt{\mathrm{a}^{2}-4 \mathrm{bc}}$
(d) $\sqrt{\mathrm{b}^{2}+4 \mathrm{ac}}$

Q04. If the roots of a quadratic equation are equal, then the discriminant is:
(a) 1
(b) 0
(c) greater than 0
(d) less than 0

Q 05 . The roots of $3 \mathrm{x}^{2}-7 \mathrm{x}+4=0$ are:
(a) rationals
(b) irrationals
(c) positive integers
(d) negative integers

Q06. The roots of equation $\mathrm{x}+\frac{16}{\mathrm{x}}=10$ are:
(a) 4,6
(b) 4, 4
(c) 4,5
(d) 2,8

Q07. If α, β are the roots of $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0$, then the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$ is:
(a) $\frac{p^{2}-2 q}{q}$
(b) $\frac{2 q-p^{2}}{q}$
(c) $\frac{p^{2}+2 q}{q}$
(d) None of these

Q08. If the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ be equal, then the value of c is:
(a) $-\frac{\mathrm{b}}{2 \mathrm{a}}$
(b) $\frac{\mathrm{b}}{2 \mathrm{a}}$
(c) $-\frac{\mathrm{b}^{2}}{4 \mathrm{a}}$
(d) $\frac{b^{2}}{4 a}$

Q09. If the sum of the roots of an equation is 6 and one root is $3-\sqrt{5}$, then the equation is:
(a) $x^{2}-6 x+4=0$
(b) $x^{2}-4 x+6=0$
(c) $x^{2}-6 x+5=0$
(d) None of these

Q10. If α, β be the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, then the value of $\alpha^{2}+\beta^{2}$ is:
(a) $\frac{b^{2}-2 a c}{2 a}$
(b) $\frac{b^{2}-4 a c}{2 a}$
(c) $\frac{b^{2}-2 a c}{a^{2}}$
(d) $\frac{b^{2}+4 a c}{2 a c}$

Q11. The quadratic equation whose roots are $\mathrm{a}, \frac{1}{\mathrm{a}}$ is:
(a) $\mathrm{ax}^{2}-\left(\mathrm{a}^{2}+1\right) \mathrm{x}+\mathrm{a}=0$
(b) $\mathrm{ax}^{2}-\left(\mathrm{a}^{2}-1\right) \mathrm{x}+\mathrm{a}=0$
(c) $\mathrm{ax}^{2}-\left(\mathrm{a}^{2}-1\right) \mathrm{x}-\mathrm{a}=0$
(d) None of these

Q12. The sum of the age of a son and his father is 35 years and the product is 150 . Their ages are:
(a) 15 years, 20 years
(b) 15 years, 10 years
(c) 5 years, 30 years
(d) 6 years, 30 years

Q13. A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{h}$ more, it would have taken 1 hour less for the same journey. The speed of the train is:
(a) $30 \mathrm{~km} / \mathrm{h}$
(b) $35 \mathrm{~km} / \mathrm{h}$
(c) $12 \mathrm{~km} / \mathrm{h}$
(d) $40 \mathrm{~km} / \mathrm{h}$

Q14. The value of x on solving $\frac{x}{x-1}+\frac{x-1}{x}=2 \frac{1}{2}$ will be:
(a) $-2,1$
(b) $-2,-1$
(c) $2,-1$
(d) None of these

Q15. What is the sum of the roots of the equation $\mathrm{x}(3 \mathrm{x}+8)=3$?
(a) $\frac{8}{3}$
(b) $-\frac{8}{3}$
(c) 8
(d) 3

Q16. The roots of the equation $\sqrt{2 \mathrm{x}+9}+\mathrm{x}=13$ are:
(a) $8,-20$
(b) $20,-8$
(c) $-20,-8$
(d) 20,8

Q17. The values of x on solving $15 x+\frac{3}{x}=18$ are:
(a) 5,1
(b) $\frac{2}{5}, \frac{1}{2}$
(c) 2, 3
(d) $1, \frac{1}{5}$

Q18. If $\sqrt{\mathrm{x}-7}+\sqrt{\mathrm{x}-3}=2$ then the value of x is:
(a) 9
(b) 7
(c) 19
(d) 3

Q19. If $\frac{x}{2}+\frac{6}{x}=4$, then the value of x are:
(a) -6 and -2
(b) +6 and -2
(c) -6 and 2
(d) 6 and 2

Q20. If the sum of squares of two consecutive even numbers is 100 , then the numbers are:
(a) 4 and 6
(b) 8 and 10
(c) 10 and 12
(d) None of these

Q21. The nature of the roots of quadratic equation $x^{2}-8 x+12=0$ is:
(a) real and equal
(b) real and unequal
(c) doesn't exist
(d) can't say

Q22. If α and β are the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, then value of $\alpha^{2}+\beta^{2}+2 \alpha \beta$ is:
(a) $\frac{a^{2}}{b^{2}}$
(b) $\frac{b^{2}}{a^{2}}$
(c) $-\frac{b^{2}}{a^{2}}$
(d) Data insufficient

Q23. Sum of the areas of two squares is $468 \mathrm{~m}^{2}$. If the difference of their perimeter is 24 m , then the sides of the two squares are:
(a) $18 \mathrm{~m}, 14 \mathrm{~m}$
(b) $13 \mathrm{~m}, 12 \mathrm{~m}$
(c) $18 \mathrm{~m}, 12 \mathrm{~m}$
(d) None of these

Q24. If $\frac{x}{16}-\frac{4}{x}=0$, then x is:
(a) ± 3
(b) ± 8
(c) ± 16
(d) ± 4

Q25. If $x^{2}+y^{2}=17$ and $x y=4$ then the value of $\frac{x}{y}+\frac{y}{x}$ is:
(a) $\frac{4}{17}$
(b) $\frac{17}{4}$
(c) $\frac{5}{4}$
(d) None of these

Q26. Sum of a number and its reciprocal is $\frac{17}{4}$, the number is:
(a) 4
(b) $\frac{1}{4}$
(c) 5
(d) options (a) and (b) both

Q27. Sum of the squares of two consecutive natural numbers is 221 then, the numbers are:
(a) 9,10
(b) 10,11
(c) 11,12
(d) 12,13

Q28. If α and β are the roots of equation $2 x^{2}-5 x+3=0$ then $\alpha^{2} \beta+\beta^{2} \alpha=$ \qquad
(a) $\frac{5}{2}$
(b) $\frac{15}{4}$
(c) $\frac{3}{2}$
(d) $-\frac{15}{4}$

Q29. Product of the age of a child five years ago with his age nine years after is 15 . His present age is:
(a) 4 years
(b) 6 years
(c) 5 years
(d) None of these

Q30. If usual speed of a passenger train is increased by $5 \mathrm{~km} / \mathrm{h}$ then, it takes 2 hour less in covering the distance of 300 km . Its usual speed is:
(a) $25 \mathrm{~km} / \mathrm{h}$
(b) $20 \mathrm{~km} / \mathrm{h}$
(c) $30 \mathrm{~km} / \mathrm{h}$
(d) None of these

Q31. Which of the following is not a quadratic equation:
(a) $3 x-\frac{5}{x}=x^{2}$
(b) $3-x^{2}-8 x=0$
(c) $x+\frac{1}{\mathrm{x}}=8$
(d) $x^{2}-3=4 x^{2}-4 x$

Q32. The equation which is not a quadratic equation in the followings is:
(a) $x-\frac{3}{x}=3$
(b) $x+\frac{1}{x}=3$
(c) $3 x+\frac{3}{x}=x^{2}$
(d) $3 x^{2}-1=4 x^{2}-4 x$

Q33. The value of k for which the equation $2 \mathrm{x}^{2}+8 \mathrm{kx}+8=0$ has equal roots is:
(a) Only 3
(b) Only -3
(c) ± 3
(d) ± 1

Q34. The value of k for which $\mathrm{x}=-2$ is a root of the equation $\mathrm{kx}^{2}+\mathrm{x}-6=0$:
(a) $-\frac{3}{2}$
(b) -1
(c) -2
(d) 2

Q35. The value of ' p ' so that the quadratic equation $\mathrm{x}^{2}+5 \mathrm{px}+16=0$ has no real roots:
(a) $\mathrm{p}>8$
(b) $\mathrm{p}<5$
(c) $-\frac{8}{5}<\mathrm{p}<\frac{8}{5}$
(d) $-\frac{8}{5} \leq \mathrm{p}<0$

Q36. If $\mathrm{px}^{2}+3 \mathrm{x}+\mathrm{q}=0$ has two roots $\mathrm{x}=-1$ and $\mathrm{x}=-2$, the value of $\mathrm{q}-\mathrm{p}$ is:
(a) -1
(b) 1
(c) 2
(d) -2

Q37. The common root of the equations $x^{2}-3 x+2=0$ and $2 x^{2}-5 x+2=0$ is:
(a) $x=2$
(b) $x=1$
(c) $x=-2$
(d) $x=\frac{1}{2}$

Q38. If $x^{2}-5 x+1=0$, the value of $\left(x+\frac{1}{x}\right)$ is:
(a) -2
(b) -5
(c) 5
(d) 3

Q39. If $\mathrm{a}-3=\frac{10}{\mathrm{a}}$, the values of ' a ' are:
(a) 5, 0
(b) 5, 2
(c) $-5,2$
(d) $5,-2$

Q40. If roots of the equation $\mathrm{kx}^{2}+(\mathrm{a}+\mathrm{b}) \mathrm{x}+\mathrm{ab}=0$ are ' -1 ' and ' -b ' then, the value of ' k ' is:
(a) -1
(b) 1
(c) 2
(d) -2

Q41. The quadratic equation with real coefficients whose one root is $2+\sqrt{3}$ is:
(a) $\mathrm{x}^{2}-2 \mathrm{x}+1=0$
(b) $x^{2}-4 x+1=0$
(c) $\mathrm{x}^{2}-4 \mathrm{x}+3=0$
(d) $x^{2}-4 x+4=0$

Q42. The difference of roots of the quadratic equation $x^{2}+k x+12=0$ is 1 , the positive value of k is:
(a) -7
(b) 7
(c) 4
(d) 8

Q43. If 2,3 are the roots of $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0$, then the values of p and q are:
(a) $-5,6$
(b) 6,5
(c) $-6,5$
(d) $-5,-6$

Q44. The nature of the roots of $x^{2}-4 x+1=0$ is:
(a) real roots
(b) no real roots
(c) real and equal roots
(d) None of these

Q45. If $\mathrm{x}=\sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7 \ldots}}}}$ and $\mathrm{y}=\sqrt{20+\sqrt{20+\sqrt{20+\ldots}}}$ where $\mathrm{x}, \mathrm{y}>0$ then, which of the following isn't correct?
(a) $x+y=12$
(b) $x-y=3$
(c) $x^{2}+y^{2}=74$
(d) $x^{2}-y^{2}=24$

Q46. If $\mathrm{x}=\mathrm{a}, \mathrm{b}$ are the two roots of $9^{\mathrm{x}}-4 \times 3^{\mathrm{x}+1}+27=0$ then, which of the following isn't correct?
(a) $a+b=3$
(b) $(a-b)^{2}=1$
(c) $\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{a}}=\frac{5}{2}$
(d) $a+b=4$

Q47. If $(\sqrt{2}+1)^{x}+(\sqrt{2}-1)^{x}-2 \sqrt{2}=0$ then, sum of all possible values of x is:
(a) 0
(b) 1
(c) 2
(d) 3

ANSWERS KEY

Q01. d
Q08. d
Q15. b
Q09. a
Q03. c
Q04. b
Q05. a
Q06. d
Q07. a
Q11. a
Q12. c
Q13. d
Q14. c

Q22. b
Q16. d
Q17. d
Q18. b
Q19. d
Q20. d Q21.b
Q22.b

Q29. a
Q23. c
Q24. b
Q25. b
Q26. a
Q27. b Q28. b

Q36. a
Q30. d
Q31. a
Q32. d
Q33. d
Q34. d
Q35. c
Q36

Q37. a
Q43. a
Q44. a
Q38. d
Q39. d
Q40. a
Q41. b
Q42. b
Q45. b
Q46. d
Q47. a
\# Dear math scholars,
We have taken utmost care while preparing this draft. Still chances of human error can't be ruled out. Please inform us about any Typing error / mistake in this document.
This will help many future learners of Mathematics.
Email ID-iMathematicia@gmail.com
WhatsApp @ +919650350480 (only message)
O.P. GUPTA, Math Mentor
[Maths (Hons.), E \& C Engg., Indira Award Winner]
Follow us on Twitter @theopgupta
Follow us on Instagram@theopgupta
Official Website : www.theOPGupta.com

YouTube.com/MathematiciaByOPGupta

■ Buy our Books, Test Papers and Sample Papers at theopgupta.com

To get FREE PDF Materials, join WhatsApp Teachers Group by Clicking on the Logo

If you are a Student, then you may join our Students Group

CLLCK HeRE FOR
CLASSES
IX \& X
CLICK HERE FOR
CLASSES
XI \& XII

You can add our WhatsApp no. +919650350480 to your Groups also Feel Safe to Share this Document with other math scholars

CLICK NOW
Download

FREE PDF SAMPLE PAPERS FOR THE CLASSES XII, XI \& X or, just type bit.ly/m/theopgupta

Mathematics (041)

Click on the Image of any Book, to Buy it

Many Direct Questions from our Books have been asked in the recent CBSEExams

Buy our books on

